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1.1 Introduction

The immune system has evolved in all vertebrates as protection 
against pathogenic micro-organisms, thereby preventing us from a 
certain death by infections. The immune system can be divided into the 
innate immune system and the acquired or adaptive immune system, 
each with their specific network of cells to control pathogen invasion.

 The innate immune system is an early and rapid defence 
mechanism against pathogens and is mainly dependent on the function 
of macrophages (Mϕ), dendritic cells (DCs), granulocytes and natural 
killer (NK) cells. These cells are able to respond to pathogens with germ-
line encoded pattern recognition receptors (PRRs). These PRRs include 
Toll-like receptors (TLRs)1;2, C-type lectins3;4, scavenger receptors and 
intracellular nucleotide-binding oligomerization domain (NOD)-like 
receptors5. PRRs recognize highly conserved and pathogen-specific 
PAMPs (pathogen-associated molecular patterns), ranging from proteins 
to nucleic acids. 

Especially Mϕ and granulocytes very efficiently internalize pathogens, 
which are then killed through the release of cytotoxic agents like reactive 
oxygen species (ROS). On the other hand, NK cells are important for 
preventing viral infections by killing virally infected host cells. The role of 
DCs will be discussed in detail in chapter 1.4.

	 The acquired immune system, formed by T cells and B cells, is 
able to elicit antigen (Ag)-specific immune responses and immunological 
memory. Due to this memory, the acquired immune system is able to 
launch Ag-specific, secondary immune responses to prevent illness during 
the second encounter of the same pathogen. T cells are divided into 
CD8+ T cells and CD4+ T cells that express unique T cell receptors (TCRs). 
TCRs recognize peptides presented by histocompatibility complex (MHC) 
class I or MHC class II molecules, respectively. T cells recognize Ag only 
when it is presented by self-MHC-molecules and this restriction results in 
a process of positive and negative selection during T cell development in 
the thymus. Since inappropriate T cell activation could possibly result in 
the development of autoimmune diseases, only the so-called professional 
antigen-presenting cells (APCs) are capable to instruct and regulate the 
activation of naïve T cells.
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1.2 Antigen presentation and T cell 
activation 

There are different routes for Ag-presentation, activating either CD4+ 
T cells or CD8+ T cells (Figure 1)6;7. APCs are able to take up extracellular 
Ags for presentation in MHC class II leading to CD4+ T cell activation. 
After internalization, Ags are located in the phagosomes, which will fuse 
during maturation with early and late endosomes and lysosomes. The 
acidification machinery in these phago-lysosomes generates an optimal 
environment for cathepsins and other hydrolytic enzymes that are 
involved in Ag-degradation.

Intracellular peptides are generally presented in MHC class I 
molecules, an ability of almost all nucleated cells. MHC class I restricted 
Ags are derived from cytosolic proteins of both viral- and self-origin. 
Recognition of these Ag-MHC class I molecule complexes allows CD8+ T 
cells to destruct virus-infected and cancer cells. 

MHC class I is a heterodimer consisting of a single transmembrane 
heavy chain and a soluble β2 microglobulin light chain. The heavy chain 
has three polymorphic domains (α1-α3) and between the membrane 
distal domains α1 and α2 the peptide-binding groove is located, 
which binds peptides of typically 8-9 amino acids (aa) in length. For 
the generation of peptides in the MHC class I assembly route8-10, the 
cellular protein-degradation pathway is used, meaning that Ags have 
to be processed by multicatalytic proteases, the proteasomes, that are 
normally regulating cytoplasmic protein turnover. In APCs, proteasomes 
are specially modified to facilitate MHC class I restricted Ag-processing by 
altering the cleavage pattern of proteins and promoting the generation 
of peptides. Proteasomes cleave ubiquitinated proteins into polypeptides 
consisting of 3-22 aa in length, with an average of 8-9 aa11;12. The 
peptides are then transported into the endoplasmatic reticulum (ER) by 
adenosine triphosphate (ATP)-dependent transporters associated with 
antigen processing (TAP1 and TAP2) (Figure 1). TAP is linked to the 
β2-microglobulin light chain of MHC class I by tapasin. Together with 
chaperones, protein disulfide isomerase, calnexin and/or calreticulin and 
ERp57, the peptide-loading complex (PLC) is formed, which facilitates the 
binding of peptides to the groove of the free MHC class I molecule13;14. 

Only peptides that bind with very high affinity can stabilize the 
MHC class I molecule. The TAP-transported peptides bind to MHC 
class I molecules with their C-terminus, but often contain at their 
N-terminus extra residues that do not fit into the binding-groove15-17. 
For optimal binding, the peptides have to be trimmed by ER amino-
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|Figure 1| Loading and trafficking of MHC class I and II molecules. 
Ag-processing and presentation can be divided into a endogenous and exogenous pathway. 
During endogenous Ag-presentation, intracellular proteins are degraded by proteasomes 
into peptides. These peptides are transported into the endoplasmatic reticulum (ER) by 
the transporter associated with antigen processing (TAP) complex. In the lumen of the ER, 
peptides are loaded onto available MHC class I molecules, a process that is facilitated by 
the peptide-loading complex (PLC). Once bound, peptides require further trimming by the 
ER-aminopeptidase I (ERAP). Peptide-loaded MHC class I molecules are transported via the 
Golgi complex to the cell surface where it can be recognized by CD8+ T cells. Extracellular 
Ags are processed after internalization following the exogenous Ag-presentation pathway. 
During this process, phagosomes undergo maturation into phagolysosomes by fusing with 
lysosomes. Ags are degraded into peptides that are able to bind to MHC class II molecules. 
These MHC class II molecules are assembled in the ER and exist as dimers due to the spe-
cialized chaperone invariant chain (Li). This prevents binding of endogenous Ags. The MHC 
class II-Li complex is transported via the Golgi system into MHC class II containing compart-
ments (MIIC), where also phagolysosomes will fuse. The Li is degraded into CLIP (class II-
associated invariant-chain peptide). Antigenic peptides will replace CLIP and peptide loaded 
MHC class II molecules will be transported to the cell surface for interaction with CD4+ T 
cells. Alternatively, DCs can also present extracellular Ags in the context of MHC class I to 
CD8+ T cells during a process called cross-presentation. For this, Ags are diverted from the 
exogenous pathway into the conventional endogenous pathway. [Adapted from Heath and 
Carbone 2001]22.
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peptidase associated with Ag-processing (ERAAP) to generate final MHC 
class I-peptide complexes18;19. Once a peptide has bound, the PLC will 
dissociate and the loaded MHC class I molecule exits from the ER to the 
cell membrane and is now available for recognition by CD8+ T cells. 
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1.3 Cross-presentation

Direct MHC class I presentation by cells plays a crucial role in the 
removal of virally infected cells and tumor cells by CD8+ T cells. However, 
for the initial activation of CD8+ T cells, endogenous Ags need to be 
processed and presented by professional APCs, such as DCs. The need 
for APCs for activation of naïve T cells, implies that a virus could easily 
escape detection by the immune system by not infecting APCs, or by 
down regulating APC activation. To circumvent this, the immune system 
has developed an exogenous pathway for MHC class I loading that allows 
sampling from other cells. This so called cross-priming has first been 
described by Bevan in 1976 and is essential for activation of cytotoxic T 
cells (CTLs) towards non-replicating ligands or Ags that are not present 
in the APC itself, e.g. tissue specific viruses20-23. Cross-presentation 
seems to be a characteristic of mainly DCs24 but also B-cells25, endothelial 
cells26;27, and Mϕ28-30 have been shown to exhibit cross-presentation 
capacities, although to a much lower extent. As described, cellular Ags 
are an obvious target for cross-presentation, but also many other types 
of Ags, varying from soluble Ags and immune complexes to intracellular 
bacteria and parasites, are shown to be cross-presented.

 	 Cross-presentation seems to be completely dependent on TAP, as 
has been shown in bone marrow (BM)-derived cells31;32, although a TAP 
independent pathway has also been described33. This TAP independent, 
vacuolar pathway involves proteolysis of endocytic Ags by cysteine 
proteases (e.g. cathepsins) and subsequent loading of recycled MHC class 
I molecules in this endosomal compartment34. It is, however, unlikely 
that endosomal digestion would result in the same peptide repertoire 
as proteasomal degradation. For the induction of protective immune 
responses, it is essential that the peptide repertoire produced by DCs is 
similar to that presented in MHC class I by infected cells. The relevance 
of this vacuolar pathway is therefore not clear, but is thought to play a 
role in cross-presentation by plasmacytoid DCs (pDCs)35. 

One of the major TAP dependent, proteasomal pathways requires 
egress of the internalized Ags into the cytosol where it can become a 
substrate for proteasome dependent peptide generation, and the delivery 
via TAP into the ER (phagosome-to-cytosol pathway)36. How exactly the 
delivery out of the phagosomes works is unclear. Phagosomes can also 
fuse directly with the ER, which provides MHC class I molecules, TAP, 
tapasin and other ER resident proteins. Ags are then transported into the 
cytosol for degradation by Sec-61 or by the ER associated degradation 
pathway (ERAD), a mechanism involved in the removal of misfolded 



15

1
proteins from the ER37. Ags are subsequently transferred by TAP back 
into the phagosome (phagosome-to-cytosol-to-phagosome pathway) or 
into the ER (phagosome-to-ER pathway)38-41. 

Another pathway for cross-presentation is the leakage of proteins via 
endosomal pores or after rupture of the phagosomal membrane, which can 
be caused e.g. by infection with C. neoformans42. Intracellular peptides 
can also be transferred directly from the cytoplasm of a target cell into 
the cytoplasm of DCs through connexion 43-formed gap junctions43. 

Cross-presentation does not only induce the activation of CD8+ T 
cells, but cross-presentation of cellular Ags by CD8+ DCs has also been 
implicated in T cell tolerance44;45.

	

1.4 Dendritic cells 

DCs are phagocytes that have been shown to be the central players 
of the immune system46. They are the professional APCs of the body 
and are the only cell type able to induce primary immune responses 
by activating naïve T cells46-48. DCs are involved in innate recognition of 
pathogens resulting in the subsequent activation of T cells [reviewed by 
Reiss e Sousa49]. Therefore, DCs are considered to be bridges between 
the innate and acquired immune system.

Immature DCs are strategically positioned at locations that line 
the external environment like skin and mucosa, as sentinels constantly 
screening for incoming pathogens. DCs are equipped with a whole array 
of receptors (e.g. lectins, Fc- receptors and complement receptors) for 
recognition and internalization of Ag, allowing DCs to respond quickly 
to different pathogen related stimuli such as LPS or bacterial DNA. DCs 
use several pathways for Ag-capture. Immune-complexes, microbes, 
soluble Ags but also dying cells and tumor cells are taken up by (macro)-
pinocytosis or receptor-mediated uptake.

DCs, although not all, show a biphasic life cycle, often referred to as 
the Langerhans cell (LC) paradigm. This means that after Ag-encounter 
or tissue damage, DCs mature into Ag-presenting cells. These APCs have 
lower Ag-uptake capacity but increased ability to activate T cells. During 
maturation, molecules that interact with T cells are up-regulated, e.g. 
several members of the B7-family (CD80/CD86, ICOS-L) and TNF-family 
(CD134, Ox40L, CD70). Mature DCs change their morphology and gain 
high cellular mobility. The up-regulation of members of the chemokine 
receptor family (e.g. CCR7) directs DCs to migrate towards secondary 
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lymphoid tissues where most T cells reside50-52. The transport of Ags 
to the lymph nodes (LN) is important for increasing the chances of 
interaction with naïve T cells. 

DCs continuously migrate towards LN, also in steady state without 
any trigger for DC activation. These semi-mature DCs are important for 
immune-regulation and tolerance induction against self and environmental 
proteins. Mature DCs are immunogenic, whereas semi-mature DCs are 
tolerogenic, able to induce T regulatory (Treg) cells. 

By the release of large amounts of cytokines, DCs are able to direct 
and regulate the differentiation of CD8+ T cells into CTLs, and of CD4+ T 
cells towards T helper 1 (Th1), Th2, Th17 or Treg cells. DCs not only induce 
differentiation and sustain the expansion of effector T cell functions, but 
are also required for the induction of immunological memory by these T 
cells. Next to their role in T cell proliferation53;54, DCs are also shown to be 
involved in T cell dependent Ab production by B cells55 and proliferation 
of NK cells56;57. 

The ability of DCs to initiate immune responses distinguishes them 
from other phagocytes like Mϕ and granulocytes22;58. DCs proved to 
be more than 100 times better at stimulating spleen cells in primary 
allogeneic mixed leukocyte reactions than Mϕ59. It has been described 
that variations in phagosomal properties can impact Ag-presentation 
efficiencies60. The main function of Mϕ is to destroy pathogens, rather 
than Ag-presentation61. Mϕ therefore produce large amounts of reactive 
oxygen species (ROS), which together with proteases, are required for 
microbial killing. DCs are less efficient in the degradation and destruction 
of pathogens. They do not express the full array of proteases like Mϕ 
do, and have specialized endocytic mechanisms to control protein 
degradation62;63. The more neutral pH and the limited proteolytic 
activity in DCs protects Ags from total degradation, which favors Ag-
presentation. As a consequence, intact Ag was observed for prolonged 
time in specialized, MHC class II rich vesicles in DCs, representing an 
intracellular source of Ag for presentation. 

1.5 Dendritic cell subsets 

DCs form a heterogeneous population of cells64. Although all DCs 
can take Ags up and present them to T cells, different DC subsets can 
be identified based on distribution, phenotype and function [reviewed by 
Shortman and Naik65, Villadangos and Schnorrer66]. These DC subsets 
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A |Figure 2| Three resident DC subsets in the mouse 
spleen. 
Based on the expression of CD11c, CD8 and CD4, con-
ventional DCs in the spleen can be divided into 3 sub-
populations. (A) DCs can be purified from the spleen 
using CD11c-coated magnetic beads. When stained for 
CD11c and CD8, a main CD8- DC population and a smal-
ler CD8+ DC population can be identified. (B) The CD8- 
DC subset can be further subdivided into CD8-CD4+ and 
double negative CD8-CD4- DCs by staining CD11c cells 
(gated cells in A) for CD4 and CD8.

are localized in different microenvironments and have a different life 
span. Due to their differences in PRR expression and responsiveness, 
DCs also differ in their capacity to produce certain cytokines and in their 
capacity to present Ags. These differences indicate that the distinct DC 
subsets have evolved to hold different functions in distinct niches in the 
immune system.

The first subdivision that can be made is between conventional DCs 
and non-conventional DCs (Table 1). Conventional DCs are defined 
by the expression of the integrin CD11c and MHC class II, although 
expression levels of these molecules are varying between one DC subset 
to another. Conventional DCs form the resident DC population in spleen, 
LN and thymus and are generated from precursors from the blood. These 
resident DCs can be further subdivided, mainly by the expression of the 
CD8αα homodimer and CD467 (Figure 2), but also by the expression 
of CD11b, SIRPα, DEC205 (CD205) and DCIR2. The spleen contains 
mainly CD8-DCIR2+ DCs (~70% of DCs) and a smaller population of 
CD8+DEC205+ DCs (see chapter 1.8 for detailed description of spleen 
histology and function). 

The CD8-DCIR2+ DC population consists 
of CD8-CD4+ and double negative CD8-CD4- 
DCs68. Since micro-array data showed that 
CD8-CD4+ and CD8-CD4- DCs are quite similar 
in gene-expression69, we refer throughout 
this thesis to the CD4+CD8- and CD4-CD8- 
DCs as a single CD8- DC type. Next to their 
phenotypical differences, conventional DC 
subsets are also found at different anatomical 

locations in the spleen and LN70. CD8+ DCs are mainly found in T cell rich 
areas such as the periarteriolar lymphatic sheets (PALS) of the spleen 
and in paracortical regions of LNs71-74. Recently, co-staining with Langerin 
(CD207) also revealed CD8+ DCs in the marginal zone (MZ)75. CD8- DCs 
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are located in the MZ and bridging channels of the spleen and in the 
subcapsular sinuses of LNs76. After stimulation with microbial products, 
DCs have been shown to migrate to the T cell areas of these organs77;78.

Conventional tissue-derived DCs follow the lifecycle described by 
the LC paradigm and include LCs and interstitial DCs that populate all 
non-lymphoid tissues. LCs are characterized by the expression of the 
C-type lectin Langerin, CD1a and the cytoplasmic Birbeck granules, and 
are populating the epidermis in close proximity to the basal membrane. 
Interstitial DCs are localized throughout the body and include dermal 
DCs in the skin and DCs at mucosal sites. LCs and interstitial DCs act as 

 

  
  

Blood derived DCs 
CD8+ DCs CD8- DCs 

CD8- DCs CD8-4- DCs 

Phenotype     

CD11c +++ +++ +++ 

CD4 - + - 
CD8 ++ - - 

CD205 + - +/- 
DCIR2 - + + 

CD11b + ++ ++ 

Dectin-1 + + + 

Langerin + - - 
CD1d + - - 
CD24 ++ + + 

Birbeck granule - - - 
Sirp - + + 

Localization T cell zones of 
lymphoid 

organs and 
marginal zone 

MZ and 
bridging 

channels of 
the spleen, 
subcapsular 
sinus of LN 

MZ and 
bridging 

channels of 
the spleen, 
subcapsular 
sinus of LN 

Function     

Ag processing and 
presentation 

+++ +++ +++ 

Cross-presentation +++ + + 

MHC class II 
presentation 

+ +++ +++ 

+ indicates low level of expression and +++ signifies high levels 
of expression, - indicate lack of expression. Adapted from [Pu-
lendran 2004]165 and [Villadangos and Schnorrer 2007]66

 
|Table 1| Splenic DC subsets; phenotype and function.
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sentinels for pathogens and migrate after Ag-encounter via the afferent 
lymph vessels towards local draining LNs. As a consequence, LCs can 
only be found in skin draining LN, while interstitial DCs can be found in 
all LNs. The spleen does not contain these tissue-derived DCs, since it is 
not connected to the lymphatic system.

Some other, non-conventional DC subsets, such as plasmacytoid DCs 
(pDCs)79 or TNF/iNOS-producing (Tip)-DCs65 can be identified both in 
mouse and man. These DC subsets are important for cytokine production 
and the mediation of innate immunity80. pDCs are determined by their 
CD11clow, B220hi, CD45RA+ phenotype, and can be found in many tissues 
including the spleen. As response to various viral or bacterial infections, 
pDCs are the main producers of type I interferon (IFNs)81-83. This cytokine 
is important for blocking viral replication and for the activation of other 
DCs. Type I IFN production by pDCs has also been shown to be important 
for the induction of CD8+ T cell memory84. The role of pDCs in Ag-uptake 
and Ag-presentation is unclear. Whereas some studies show a role for 
pDCs in Ag-specific T cell activation, others do not85.

Under inflammatory conditions, e.g. during bacterial, viral, or parasitic 
infections, monocytes can differentiate into inflammatory DCs65;86. These 
so called Tip-DCs represent an ‘emergency’ source of DCs at the site of 
inflammation, however, their exact role in the induction and regulation 
of immunity is still unclear. 

1.6 Dendritic cell development

Since DCs are cells with a limited proliferative capacity and a relative 
short live span of about 10-14 days87, there is high turnover of DCs in 
tissues. The complex development of DCs is still not fully understood. 
DCs originate from CD34+ hematopoietic stem cells (HSC) in the BM88;89 
(Figure 3). These HSC differentiate into common myeloid precursors 
(CMP) and common lymphoid precursors (CLP) lacking ‘lineage 
markers’90. Originally, it was thought that next to the generation of Mϕ 
and granulocytes, also CD8- DCs were derived from CMPs. The myeloid 
origin of this DC subset was suggested by the ability to generate CD8- 
DCs after culturing BM in the presence of GM-CSF. CD8+ DCs on the other 
hand were thought to develop from CLPs, in addition to T cells, B cells 
and NK cells. Now it is generally accepted that both CMP and CLP can 
give rise to all DC subsets found in mouse lymphoid organs91-93. CMP and 
CLP differentiate into macrophage-DC precursors or into pro-DCs. These 
pro-DCs, or common DC precursors, are a mixture of precursor cells 
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at various levels of differentiation not committed to a certain subset88. 
Commitment occurs at the pre-DC stage from which conventional DC 
subsets and pDCs originate. 

To replenish the pool of DCs, pro-DCs continually migrate from the 
BM throughout the blood to repopulate peripheral organs, spleen and 
LNs as immature cells for final differentiation. Once differentiated, DC 
subsets are stable, not able to interconvert into other subsets. One report 
showed that CD8- DCs are able to differentiate into CD8+ DCs94, although 
these CD8+ DCs could possibly have originated from direct precursor 
DCs not yet expressing CD895. 

Although DC function in the immune system is studied extensively, 
the molecular basis of DC development and homeostasis is poorly 
understood. Nevertheless, studies with knockout mice revealed that there 
are several important factors for DC development, subset differentiation 
and DC homeostasis65. Some transcription factors are identified to be 
involved in CD8- DC homeostasis, like the NF-κB transcription family and 
the interferon regulatory factor (IRF) family. 

The NF-κB family of transcription factors is ubiquitously expressed and 
is involved in the regulation of many genes. The subunits of this protein 
family, p50, p52, RelA (p65), RelB and c-REL form dimeric complexes 
that are located as inactive components in the cytosol. Activation 
induces the degradation of IκΒs, the inhibitory proteins associated with 
these dimers, resulting in the translocation of the NF-κB subunits into 
the nucleus and subsequently the transcription of target genes. The 
involvement of the NF-κB superfamily in DC homeostasis is shown by 
mice deficient in one of the subunits. In mice lacking RelB, the CD8- 
DCs are strongly diminished in number93;96;97 This indicates that RelB is 
essential for the development of CD8- DCs but not of CD8+ DCs, while 
other NF-κB subunits are involved in the survival of more than one DC 
subset. Mice missing RelA and p50 have almost no DCs at all, probably 
due to an unresponsiveness to TRANCE and CD40L that control survival 
and IL12p40 production98.

The IRF family regulates a large spectrum of DC functions during 
immune responses but is also involved in DC development99-101. DC 
subsets express different levels of IRF-4 and IRF-8. CD8+ DCs and pDCs 
express high levels of IRF-8 but no IRF-4. The importance of IRF-8 in the 
development of these DC subsets is shown in mice lacking IRF-8, where 
both CD8+ DCs and pDCs are largely absent102. On the other hand, IRF-4 
is required for normal CD8- DC development103. Mice missing PU.1, an 
immune cell specific transcription factor of the Ets family which interact 
with IRF-8, do not have CD8- DCs104. 
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 Another group of molecules important for proper DC development 
are involved in the Notch signaling cascade. The canonical Notch-RBP-J 
signaling pathway is important for the survival of mainly CD8- DCs, as 
shown in mice where genetic inactivation of RBP-J resulted in reduced 
numbers of splenic DCs105. 

The transcription factor Id2 is crucial for the development of LCs and 
splenic CD8+ DCs106. Ikaros is an important regulator for the specification 
of lymphoid lineage development. And although the effect is mainly on 
‘lymphoid’ DCs, in Ikaros-/- animals both splenic CD8- and CD8+ DCs are 
impaired in number107;108. For a more complete overview on transcription 
factors involved in DC homeostasis, see Merad and Manz109.

There are several methods for in vitro generation of DCs. A standard 
method is to culture BM cells in the presence of GM-CSF. These GM-CSF 
generated BM-DCs are the most common DC type used in studies on 
mouse and human DC biology. However, GM-CSF generated DCs are not 
representing the conventional steady-state DC subsets in spleen and LN. 
GM-CSF preferentially expands ‘myeloid’ DCs, and moreover, they are 
described as in vitro equivalents of Tip-DCs. This indicates that although 
GM-CSF is dispensable for steady-state DC development (it is rather 

|Figure 3| Splenic DCs develop from a common DC precursor. 
CD34+Flt3- hematopoietic stem cell (HSC) in bone marrow (BM) differentiate into Flt3+ mul-
tipotent HSC with limited self-renewing capacities. During differentiation, the common mye-
loid precursors (CMP) and common lymphoid precursors (CLP) give rise to more committed 
progenitors, including the Mf-DC precursor and pro-DCs. Mf-DC precursors mainly develop 
into monocytes and Mf. Under inflammatory conditions, these monocytes can give rise to 
monocytes-derived DCs and TNF/iNOS-producing (Tip)-DCs. In the BM, pro-DCs divide and 
differentiate into pre-DCs and pDCs. Pre-DCs than migrate via the blood to the spleen and 
other lymphoid tissues, and en route pre-DCs differentiate into conventional CD8+ and CD8- 
DC sublineages. The life span of these CD8+ and CD8- DCs is short. During steady-state, the 
pool of splenic DCs is continuously replaced by new precursors recruited from the blood, or 
from an intrasplenic population of cells with low-level homeostatic self-renewal capacities.
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working as a survival factor), it can play a role in DC differentiation 
during inflammation.

Another way to differentiate DCs from BM precursors is by culturing 
them with Fms-like tyrosine kinase 3 ligand (Flt3L). In contrast to GM-CSF, 
Flt3L is the main cytokine both sufficient and required for normal steady 
state development110;111. Flt3L has been shown to be a growth factor for 
early hematopoietic precursors in the BM112-114 and induces the expansion 
and differentiation of all DCs, except LCs in vivo and in vitro110;115-117. 
Injection of Flt3L leads to massive expansion of DCs and pDCs115;118, 
while Flt3L-/- mice have abrogated DC numbers119. Flt3L is produced in 
vivo by stromal cells and by activated T cells and is up-regulated during 
inflammation to ensure sufficient DC production112. BM-DCs produced by 
Flt3L cultures closely resemble the immature steady-state spleen DCs. 
Despite the lack of CD8 and CD4 expression, CD11c+CD24+CD11blow and 
CD11c+CD11b+Sirpα+ DCs resemble CD8+ and CD8- DCs, respectively, in 
function and phenotype111. Therefore, it is to be expected that this Flt3L 
culture system will replace the GM-CSF culture system as standard for in 
vitro DC studies in the near future.

1.7 Heterogeneity in Ag-presentation 
between splenic DC subsets

As described above, splenic DC subsets differ in development, 
phenotype and localization. Also their capacity to present Ags and to 
activate CD4+ or CD8+ T cells is different. One of the differences between 
splenic DC subsets is their role in Th cell differentiation. CD8+ DCs induce 
Th1 T cell responses by the production of large amounts of IL-12, while 
CD8- DCs do not produce IL-12 and preferentially induce Th2 responses120-

122. Next to this, CD8+ DCs are more efficient than CD8- DCs than in 
cross-presentation of cellular Ag123, soluble Ag124, latex bead associated 
Ag125 and of Ag-coupled to Abs76;126. On the other hand, CD8- DCs are 
more effective than CD8+ DCs at presenting exogenous Ags by MHC 
class II to CD4+ T cells for phagocytosed Ag124;125 and DC targeted Ag76.

What exactly causes these differences between the DC subsets? 
A simple explanation would be that differences in cross-presentation 
are caused by differential Ag-capture; for example, the specific cross-
presentation of cellular Ags by CD8+ DCs was assumed to be caused by 
differential uptake of apoptotic cells. Clec9A, for example, is specifically 
expressed on CD8+ DCs and is involved in the recognition of apoptotic 
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cells127;128. Other studies, however, showed no differences in cellular 
uptake125, and also the MHC class II presentation of cell-associated Ag, 
which are equal between CD8- and CD8+ DCs [JMM den Haan, unpublished 
results] argue against such a differential Ag-uptake. But again, for 
other Ag-sources, differential Ag-uptake could play a role since multiple 
putative Ag-receptors, like the C-type lectins DEC205 and DCIR2, are 
differentially expressed among DC subsets.

Research by Dudziak et al. showed a lower expression of MHC class 
I or class II components by the CD8- and CD8+ DCs, respectively76. This 
however cannot completely explain the DC differences. First of all, all 
DCs express high levels of MHC class I and II, indicating that DCs are 
intrinsically able to generate class I and class II peptides. CD8+ DCs are 
very important for MHC class II presentation of cellular Ag129 whereas 
cross-presentation of immune-complexed Ags occurred by both DC 
subsets130. Also for endogenous Ag, no differences between DC subsets 
in MHC class I presentation are observed, indicating that it is not the 
expression of the MHC class I processing pathway that is insufficient, 
but rather the ability to process certain Ags that differs between DC 
subsets. 

The efficiency of MHC class I or class II presentation is dependent 
on the routing of Ag. Differences in Ag-trafficking within the DCs will 
determine how much of the Ag is delivered into either pathway, and will 
also determine the degradation of Ags by regulating protease activity131 
and acidification of phagosomes62. For cross-presentation, Ag has to be 
transferred into the cytosol132 and passaged through the ER133. These 
pathways seem to be constitutively active in CD8+ DCs, while these are less 
efficient in CD8- DCs. However, intrinsic differences in cross-presentation 
of DC subsets can be overcome by particular modes of activation; CD8+ 

DCs constitutively cross-present while CD8- DCs require activation by 
stimuli via FcγR130, TCRs or T cell help134. However, more research is 
required for a more detailed description of DC subset function.

1.8 The spleen as lymphoid organ

In this thesis, many aspects of DC subsets within the spleen are 
described. For better understanding of DC functioning, knowledge about 
the architecture of the spleen and its function in the immune system is 
required. 

The spleen is the largest lymphoid organ of the body. Histologically, 
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the spleen consists of red pulp, a venous sinusoidal system, and of 
white pulp. The white pulp is the lymphoid region within the spleen and 
is composed of B cell follicles and T cell areas surrounding a central 
arteriole. Between the red and white pulp, the MZ is located135 and 
since the marginal sinuses are opening there, most of the arterial blood 
that enters the spleen is running through the MZ, where re-circulating 
lymphocytes can leave the blood. The MZ itself contains a large number of 
non-migrating, resident cells136;137. These resident cells, such as marginal 
metallophilic macrophages (MMM), marginal zone macrophages (MZM) 
and marginal zone B cells, are very potent phagocytic cells that are 
required for initial blood filtration and uptake of bacteria, red blood cells 
and other foreign particles from the blood138. The relative high frequency 
of phagocytosing cells indicates the role of the spleen as an important 
barrier against invading pathogens139-143.

Of the splenic phagocytic cells, the DC subsets are already extensively 
described (chapter 1.5), but also Mϕ form a very heterogeneous population 
of cells within the spleen. Splenic Mϕ, differ in the expression of PRRs 

|Figure 4| Macrophage subsets in the spleen. 
The white pulp of the spleen is composed of B cell follicles and T cell areas surrounding a 
central arteriole. Between the red and white pulp, the marginal zone (MZ) is located. In the 
MZ, two types of macrophages (Mf) are present. Marginal metallophilic macrophages (MMM) 
are located as a tight network in the inner part of the MZ near the white pulp. The MMM can 
be identified by the specific expression of Siglec-1. Marginal zone macrophages (MZM) ex-
press Sign-R1 and can be found in the outer MZ towards the red pulp. These two types of re-
sident macrophages efficiently phagocytose dead cells, bacteria, and other foreign particles 
from the blood. In the red pulp, mainly F4/80 expressing red pulp Mf can be identified.
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and in the anatomical location in the spleen, indicating their diversity in 
immune recognition144;145;146. Mϕ are involved in both innate and acquired 
immune responses, by Ag-unspecific phagocytosis and by acting as 
APC, respectively. Another important function of Mϕ is the clearance of 
apoptotic bodies147. In this case, Mϕ are not promoting immunity, but 
are involved in the maintenance of tolerance by down regulation of pro-
inflammatory cytokines and the production of IL-10 and TGF-β148. One 
of the Mϕ subpopulations in the spleen is the MZM, which is located at 
the outer border of the MZ (Figure 4). MZM express a whole array of 
pattern-recognition receptors (like scavenger-receptor A, MARCO and 
SignR1), but in contrast to other Mϕ, MZM do not express MHC class II 
molecules149. It is thought that MZM are involved in clearance of blood-
borne microorganisms and particulated Ag150-152 and do not prime T cells 
but activate B cells instead153;154. Another splenic Mϕ subset is the MMM. 
These cells are situated between the white pulp and the marginal sinus. 
MMM sample the blood155 and might play an important role during (viral) 
infections156, however the exact function of these MMM is still unknown. 
MMM express the sialic acid-binding immunoglobulin-like lectin-1 
(Siglec-1, Sialoadhesion, CD169), an antigen (Ag) recognized by the 
monoclonal antibody MOMA-1157;158;159. Siglec-1 is a receptor thought to 
be involved in cell-cell interactions160, in modulating T cell responses, 
and to serve as a phagocytotic receptor for sialyated pathogens161. Sialic 
acids are up-regulated by apoptotic cells162, suggesting that MMM maybe 
are involved in the removal of apoptotic cells from the blood163;164. 

1.9 thesis outline

Splenic DC subsets in the mouse spleen show functional and 
homeostatic differences. The scope of this research was to investigate 
these differences between DC subsets in more detail. The studies 
described in this thesis not only focus on Ag-presentation by CD8+ and 
CD8- DCs, but also on questions concerning Ag-transfer between DCs 
and splenic Mϕ, and questions concerning migration of DCs within the 
spleen were addressed. 

In chapter 2 of this thesis we studied the role of SIRPα in DC 
homeostasis. Mice deficient in functional SIRPα have reduced numbers 
of CD8- DCs in the spleen. We observed defective integrin mediated 
adhesion and migration in DCs with deficient SIRPα function and 
hypothesize that the decrease in CD8- DC numbers is due to inadequate 
migration towards the MZ and bridging channels of the spleen, which is 
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required for survival of CD8- DCs in vivo.

It has been previously shown that the CD8+ DC subset specifically 
cross-present cell-associated antigens in the context of MHC class I to 
cytotoxic T cells. In chapter 3 we determined whether other types of 
antigens, such as Saccharomyces cerevisiae encoded antigens, were 
also preferentially cross-presentated by this DC subset. Phagocytosis of 
S. cerevisea was mediated by recognition of yeast wall b-glucans by the 
dectin-1 receptor on both CD8+ and CD8- DCs, resulting in presentation 
of yeast-derived antigen in MHC class II to CD4+ T cells by both DC 
subsets. Surprisingly, cross-presentation of S. cerevisea was performed 
preferentially by the CD8- DC subset. In addition, IL-10, TNFα and IL-23 
production in response to yeast was restricted to CD8- DCs, implicating 
that CD8+ and CD8- DC subsets have different functions in immune 
responses depending on the type of Ag encountered. 

Chapter 4 describes the role of phagosome acidification in Ag-
presentation by DCs. We observed that Ag cross-presentation of several 
types of Ag was depending on the production of reactive oxygen species 
(ROS). 

To further investigate the function of CD8+ and CD8- DCs in the 
activation of T cells, we biochemically coupled OVA to antibodies specific 
for CD8+ or CD8- DCs or for splenic macrophages. In chapter 5, we 
used these complexes to target DC subsets and macrophages in vivo. 
We observed that targeting MMMs resulted in cross-priming of CD8+ T 
cells. This was due to specific transfer of Ags to CD8+ DCs, indicating that 
different APCs can work together to induce effective immunity. 

Finally, in chapter 6, the findings described in this thesis are 
summarized and discussed in the context of recent developments in DC 
research. 
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